Largest Divisible Subset - DP faster than 95%
Problem Statement:
Given a set of distinct positive integers nums
, return the largest subset answer
such that every pair (answer[i], answer[j])
of elements in this subset satisfies:
answer[i] % answer[j] == 0
, oranswer[j] % answer[i] == 0
If there are multiple solutions, return any of them.
Example 1:
Input: nums = [1,2,3] Output: [1,2] Explanation: [1,3] is also accepted.
Example 2:
Input: nums = [1,2,4,8] Output: [1,2,4,8]
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 2 * 109
- All the integers in
nums
are unique.
Solution:
The solution is similar to O(N^2) solution for LIS except that we also have to do backtracking, so we maintain 2 values per item in DP: the maximum size of sequence ending at that index and the index of the number it is a multiple of.
bool cmp(pair<int,int>a, pair<int,int>b)
{
return a.first<b.first;
}
class Solution {
public:
vector<int> largestDivisibleSubset(vector<int>& nums)
{
int n = nums.size();
sort(nums.begin(), nums.end());
vector<pair<int,int>> dp(n,{1,-1});
for (int i=1; i<n; i++)
for (int j=0; j<i; j++)
if (nums[i]%nums[j]==0 && 1+dp[j].first>dp[i].first)
dp[i] = {1+dp[j].first,j};
auto it = max_element(dp.begin(),dp.end(),cmp);
auto p = *it;
vector<int> res{nums[it-dp.begin()]};
while(p.second>=0)
{
res.push_back(nums[p.second]);
p = dp[p.second];
}
return res;
}
};
This is faster than 95% of solutions:
Runtime: 52 ms, faster than 95.12% of C++ online submissions for Largest Divisible Subset.
Memory Usage: 8.9 MB, less than 46.13% of C++ online submissions for Largest Divisible Subset.
Iām reproducing the O(N^2) solution of LIS for clarity:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n,1);
for (int i=0; i<n; i++)
for (int j=0; j<i; j++)
if (nums[i]>nums[j])
dp[i] = max(dp[j]+1,dp[i]);
return *max_element(dp.begin(),dp.end());
}
};
For more details on LIS algorithm refer here.