Two Sum II - Input Array Is Sorted - Three solutions
Problem Statement:
Given a 1-indexed array of integers numbers
that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target
number. Let these two numbers be numbers[index1]
and numbers[index2]
where 1 <= index1 < index2 <= numbers.length
.
Return the indices of the two numbers, index1
and index2
, added by one as an integer array [index1, index2]
of length 2.
The tests are generated such that there is exactly one solution. You may not use the same element twice.
Your solution must use only constant extra space.
Example 1:
Input: numbers = [2,7,11,15], target = 9 Output: [1,2] Explanation: The sum of 2 and 7 is 9. Therefore, index1 = 1, index2 = 2. We return [1, 2].
Example 2:
Input: numbers = [2,3,4], target = 6 Output: [1,3] Explanation: The sum of 2 and 4 is 6. Therefore index1 = 1, index2 = 3. We return [1, 3].
Example 3:
Input: numbers = [-1,0], target = -1 Output: [1,2] Explanation: The sum of -1 and 0 is -1. Therefore index1 = 1, index2 = 2. We return [1, 2].
Constraints:
2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers
is sorted in non-decreasing order.-1000 <= target <= 1000
- The tests are generated such that there is exactly one solution.
Solution:
HashSet:
vector<int> twoSum(vector<int>& numbers, int target)
{
unordered_map<int,int> comps;
for (int i=0; i<numbers.size(); i++)
{
if (comps.count(numbers[i])) return {comps[numbers[i]]+1,i+1};
comps[target-numbers[i]] = i;
}
return {};
}
Linear search using two pointers:
vector<int> twoSum(vector<int>& numbers, int target)
{
int lo=0, hi=numbers.size()-1;
while (lo<hi)
{
int curr = numbers[lo]+numbers[hi];
if (curr==target) return {lo+1,hi+1};
else if (curr<target) lo++;
else hi--;
}
return {};
}
Linear traversal + Binary search
vector<int> twoSum(vector<int>& numbers, int target)
{
for (int i=0; i<numbers.size(); i++)
{
if (i>0 && numbers[i]==numbers[i-1]) continue;
int tmp = target-numbers[i], lo=i+1, hi=numbers.size()-1;
while (lo<=hi)
{
int mid = lo + (hi-lo)/2;
if (numbers[mid]==tmp) return {i+1,mid+1};
else if (numbers[mid]<tmp) lo=mid+1;
else hi=mid-1;
}
}
return {};
}