Check If a String Contains All Binary Codes of Size K - HashSet 2 solutions O(n) and O(nk)
Problem Statement:
Given a binary string s
and an integer k
, return true
if every binary code of length k
is a substring of s
. Otherwise, return false
.
Example 1:
Input: s = "00110110", k = 2 Output: true Explanation: The binary codes of length 2 are "00", "01", "10" and "11". They can be all found as substrings at indices 0, 1, 3 and 2 respectively.
Example 2:
Input: s = "0110", k = 1 Output: true Explanation: The binary codes of length 1 are "0" and "1", it is clear that both exist as a substring.
Example 3:
Input: s = "0110", k = 2 Output: false Explanation: The binary code "00" is of length 2 and does not exist in the array.
Constraints:
1 <= s.length <= 5 * 105
s[i]
is either'0'
or'1'
.1 <= k <= 20
Solution:
Sol1: HashSet of int: O(n)
class Solution {
public:
bool hasAllCodes(string s, int k) {
unordered_set<int> S;
int curr = 0, n=s.size(), useful=(1<<(k-1))-1;
if (n<k) return false;
for (int i=0; i<k; i++) curr = curr*2 + (s[i]-'0');
S.insert(curr);
for (int i=k; i<n; i++)
{
curr = curr&useful;
curr = curr << 1;
curr = curr + (s[i]-'0');
S.insert(curr);
}
return S.size()==(1<<k);
}
};
Sol2: HashSet of string: O(nk)
class Solution {
public:
bool hasAllCodes(string s, int k) {
unordered_set<string> S;
int n=s.size();
for (int i=0; i<n-k+1; i++) S.insert(string(s.begin()+i,s.begin()+i+k));
return S.size()==(1<<k);
}
};